⚠ This page is served via a proxy. Original site: https://github.com
This service does not collect credentials or authentication data.
Skip to content

Command line and webapp for retrosynthetic disconnections, molecular complexity and synthetic accessibility metrics

License

Notifications You must be signed in to change notification settings

patonlab/molcomplex

Repository files navigation

MolComplex

Implementing a variety of complementary metrics for molecular complexity and synthetic accessibility.

A collaboration with the Sarpong group to understand complexity of molecules

Requirements

  • numpy, pandas
  • rdkit
  • openbabel
  • mordred
  • SYBA (conda install -c lich syba)

Set up conda environment directly using the yml file:

To install the required packages through Conda, use the env.yml file as follows and the activate the environment:

  1. conda env create -f env.yml
  2. conda activate mc This will set up the environment with molcomplex installed.

For installation by cloning the GitHub folder, perform the follwoing steps:

  1. Download the zipped folder or clone using: git clone https://github.com/patonlab/molcomplex.git
  2. Navigate to the installed folder and run: python setup.py install. This will install molcomplex in the environment you are present in.
  3. Install necessary dependencies using the following: conda install -c lich syba, conda install -c conda-forge rdkit, and conda install -c conda-forge openbabel

Recommended installation and update guide

In a nutshell, molcomplex and its dependencies are installed/updated as follows:

pip install molcomplex

conda install -c conda-forge openbabel rdkit Mordred

conda install lich::syba

conda install numpy pandas

Usage

To display the options type:

python -m molcomplex -h

The molcomplex package can be utilised as follows to obtain a csv with complexity scores.

python -m molcomplex -f examples/test.txt

To write to CSV add in the following:

python -m molcomplex -f examples/test.txt --csv

To perform a retro analysis by breaking down bonds to get complexity scores for precursors of the input SMILES add the following option:

python -m molcomplex -f examples/test.txt --csv --retro

Usage APP

To run the web app perform the following steps:

  1. Navigate to the webapp folder: cd mcwebapp
  2. Run the app as follows: python molcomplexapp.py
  3. copy paste the http://127.0.0.1:8050/ or similar into web browser to utilise as an app.

Metrics implemented

  • Bertz Complexity (CT) Score (JACS 1981, 103, 3241-3243)
  • Balaban J Score (Chem. Phys. Lett. 1982, 89, 399-404)
  • Coley SCScore (J. Chem. Inf. Model. 2018, 58, 2, 252)
  • IPC: Bonchev & Trinajstic's information content of the coefficients of the characteristic polynomial of the adjacency matrix of a hydrogen-suppressed graph of a molecule (J. Chem. Phys. 1977, 67, 4517-4533)
  • Ertl SA_Score (J. Cheminform. 2009, 1, 8)
  • Boettcher Score (J. Chem. Inf. Model. 2016, 56, 3, 462–470)
  • Rücker's total walk count (twc) index: Rücker, G.; Rücker, C. Counts of All Walks as Atomic and Molecular Descriptors. (J. Chem. Inf. Comput. Sci. 1993, 33, 683-695)
  • Proudfoot's Cm index based on atom environments: Proudfoot, J. R. A path based approach to assessing molecular complexity. Bioorganic Med. Chem. Lett. 27, 2014–2017 (2017)
  • Kappa Shape Indices 1, 2 & 3 (Quant. Struct. Act. Relat. 1986, 5, 1-7)
  • McGowan Volume (Chromatographia, 1987, 23, 243-246)
  • Labute Approximate Surface Area (Methods Mol Biol 2004, 275, 261-78)
  • Van der Waals Volume Atomic and Bond Contributions (J. Org. Chem. 2003, 68, 7368-7373).
  • Zagreb Index
  • MOE Type Desciptors (Labute ASA, PEOE VSA, SMR VSA, SLogP VSA)
  • SYBA Score (J. Cheminformatics 2020, 12, 35)
  • Multiple additional 2D metrics.

Metrics to implement:

  • Bertz’s Ns and Nt index: Bertz, S. H. & Sommer, T. J. Rigorous mathematical approaches to strategic bonds and synthetic analysis based on conceptually simple new complexity indices. Chem. Commun. 16, 2409–2410 (1997).

  • Randić's zeta index: Randić, M. & Plavšić, D. Characterization of molecular complexity. Int. J. Quantum Chem. 91, 20–31 (2002).

  • https://www.nature.com/articles/s41598-018-37253-8

Two noteworthy substructure-based methods are:

  • Barone, R. & Chanon, M. A new and simple approach to chemical complexity. Application to the synthesis of natural products. J. Chem. Inf. Comput. Sci. 41, 269–272 (2001).

  • Whitlock, H. W. On the structure of total synthesis of complex natural products. J. Org. Chem. 63, 7982–7989 (1998).

Citation:

Molecular Complexity-Inspired Synthetic Strategies Toward the Calyciphylline A-type Daphniphyllum Alkaloids Himalensine A and Daphenylline. Wright, B. A.; Okada, T.; Regni, A.; Luchini, G.; Sowndarya, S. V. S.; Chaisan, N.; Kölbl, S.; Kim, S. F.; Paton, R. S.; Sarpong, R. S. submmitted 2024

Acknowledgment:

This material is based upon work supported by the U.S. National Science Foundation under the NSF Center for Computer Assisted Synthesis (C-CAS), grant number CHE–2202693.

About

Command line and webapp for retrosynthetic disconnections, molecular complexity and synthetic accessibility metrics

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages